Supports the Blue H2

THE COLORS OF HYDROGEN

GREEN

Hydrogen produced by electrolysis of water, using electricity from renewable sources like wind or solar. Zero CO₂ emissions are produced.

PURPLE/PINK

Hydrogen produced by electrolysis using nuclear power.

BLUE

Hydrogen produced from fossil fuels (i.e., grey, black, or brown hydrogen) where CO_2 is captured and either stored or repurposed.

TURQUOISE

Hydrogen produced by thermal splitting of methane (methane pyrolysis). Instead of CO₂, solid carbon is produced.

GREY

Hydrogen extracted from natural gas using steam-methane reforming. This is the most common form of hydrogen production in the world today.

BROWN/BLACK

Hydrogen extracted from coal using gasification.

YELLOW

Hydrogen produced by electrolysis using grid electricity from various sources (i.e., renewables and fossil fuels).

WHITE

Hydrogen produced as a byproduct of industrial processes. Also refers to hydrogen occurring in its (rare) natural form.

Applied Economics Clinic

The amounts of hydrogen produced today

airovation technologies

- In recent years an increasing number of countries have committed to achieving net zero emissions. By April 2022 <u>131 countries covering 88% of global greenhouse gas emissions</u> had announced net zero targets.
- Anthropogenic emissions have already led to a global <u>temperature increase of 1.1°C</u> compared to pre-industrial levels.
- There is a <u>broad understanding</u> that net zero by 2050 is imperative to increase the chances of keeping this temperature increase to within 1.5°C.
- This renewed focus means that emissions from all the energy end uses need to be mitigated.
- While energy efficiency, electrification and renewables can achieve <u>70% of the mitigation needed</u>, hydrogen will be needed to decarbonize end uses where other options are less mature or more costly, such as <u>heavy industry</u>, long-haul transport and seasonal energy storage. Considering these applications, hydrogen could contribute

<u>10% of the mitigation needed to achieve the IRENA 1.5°C Scenario and 12% of final energy demand.</u>

The amounts of hydrogen produced today

Hydrogen is produced on a commercial basis today

it is used as a feedstock in the chemical industry and in refineries,

as part of a mix of gases in steel production, and in heat and power generation.

Global production stands at around 75 MtH2/yr as pure hydrogen and an additional

45 MtH2/yr as part of a mix of gases.

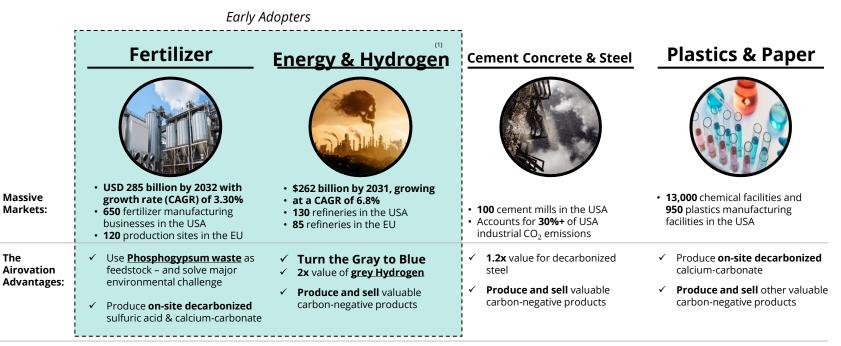
This is equivalent to 3% of global final energy demand and similar to the annual energy consumption of Germany.

Supporting Blue hydrogen production

airovation technologies

"Blue hydrogen is currently 59% cheaper to produce than renewable H₂, on average, when not factoring in subsidies or carbon prices, according to a recent update from research house Bloomberg NEF (BNEF)."

"The levelized cost of producing grey hydrogen from unabated fossil gas this year ranges from \$0.98-2.93/kg while blue — where most of the CO2 produced is captured and stored (or used) — costs between \$1.80-4.68/kg."


Airovation's profitable CCUS solution converts point-source CO₂ emissions into carbon- technologies negative chemicals, enabling the production of blue hydrogen at a competitive price, while significantly impacting the environmental and carbon footprint of hard-to-abate industries

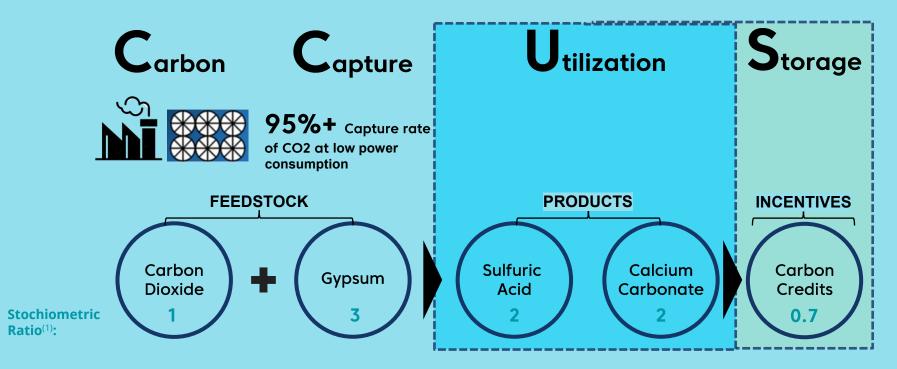
such as the fertilizer, concrete and steel

airovation

Target Markets

Additional Upside:

Avoid penalties that can amount to **\$100/mt** CO₂ per year


https://www.alliedmarketresearch.com/hydrogen-generation-market

Sources: IBIS World, Petrochemical Industry Associations, EIA, US EPA, European Environment Agency.

⁽¹⁾ Steam methane reforming (SMR), which is responsible for ~95% of the global hydrogen production (Science Direct)

https://www.precedenceresearch.com/fertilizer-market#:~:text=The%20global%20fertilizer%20market%20size,USD%2099.85%20billion%20in%202022


Leverage Point Source CO2 towards profitable utilization

airovation

Our Unique Technologies

Illustrative Processes

airovation technologies

Carbonation Tech

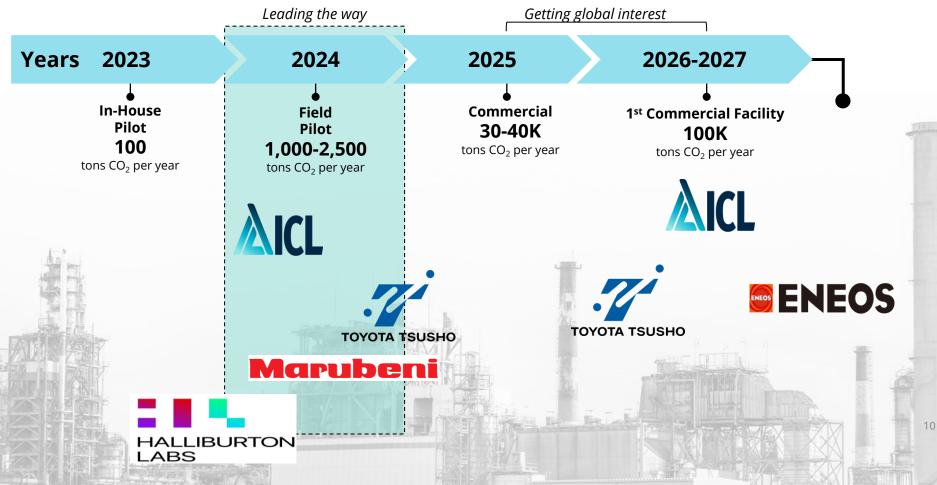
Flue gasses containing CO₂ are **captured at Point Source** and injected into our reactor

(1)

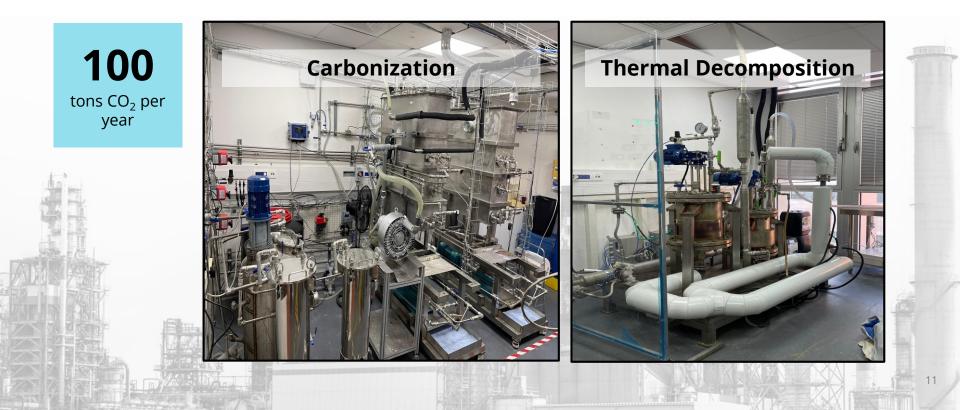
The CO₂ reacts with ammonia in a **proprietary 95%+ carbonation process** to form ammonium carbonate

Mineralization Tech

2 Further reactions in a second reactor, using gypsum to form carbon-negative ammonium sulfate and calcium carbonate


3 Dry process make minerals ready for sale

Thermal Decomposition


4 Recycle ammonia and produce carbonnegative sulfuric acid and calcium carbonate

Path to Commercialization

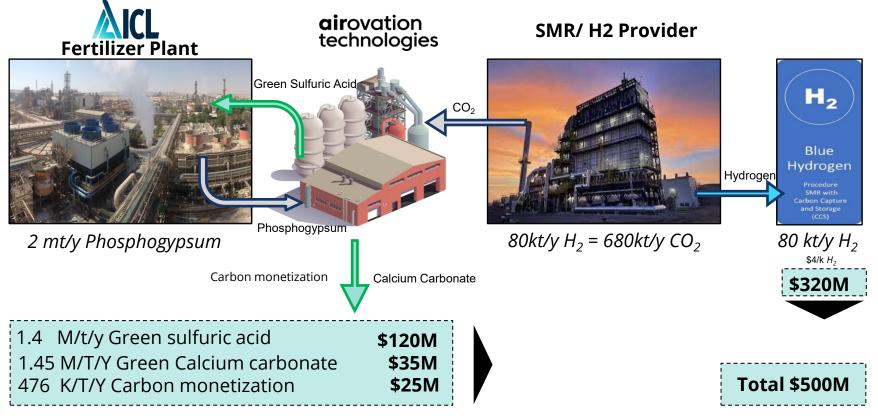
airovation technologies

In-House Pilot Facility

Phosphogypsum Feedstock

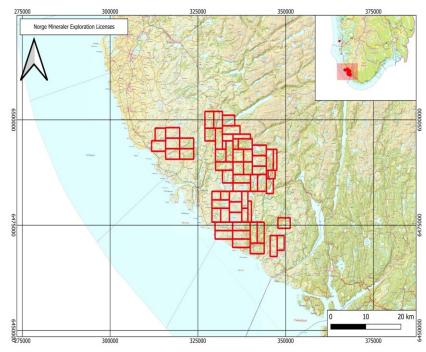
Israel Dead Sea- ICL

Korea Yeosu- Namhae Chem



~280M tons Global Phosphogypsum waste stacked *every year* >1B tons Phosphogypsum waste currently stacked in *Florida* >7B tons Phosphogypsum waste currently stacked *around the world*

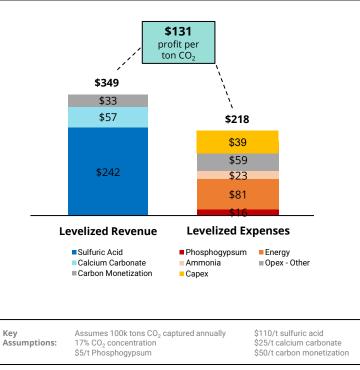
VISION: blue hydrogen valley


airovation technologies

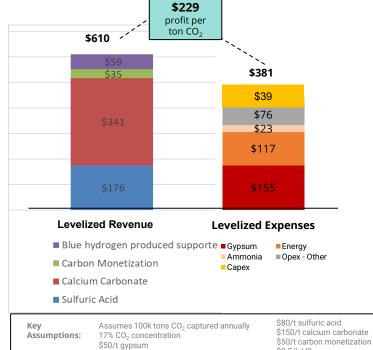
Blue Hydrogen & Wasteless Phosphate Fertilizer Ecosystem

Sources: IBIS World, Petrochemical Industry Associations, EIA, US EPA, European Environment Agency. (1) Steam methane reforming (SMR), which is responsible for ~95% of the global hydrogen production (Science Direct).

The need for Wasteless Phosphateairovation
technologiesFertilizer Ecosystem - Phosphate reservoirs and Norway 70 B/Ton



https://www.mining-technology.com/news/norway-giant-phosphate-deposit/


Attractive Levelized Unit Economics

Illustrative economics per ton CO₂ captured

Phosphogypsum Feedstock (fertilizer ICL)

Gypsum Feedstock (Blue hydrogen Japan)

\$0.5/k H2

airovation

technologies

15

Attractive Single Plant Economics

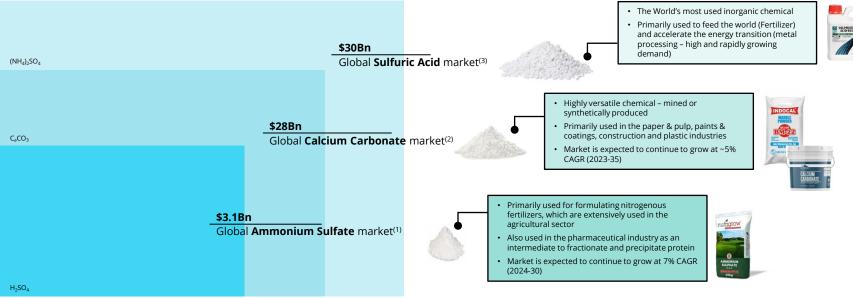
Illustrative economics by type of feedstock

Phosphogypsum Feedstock (fertilizer ICL)

Gypsum Feedstock (Blue hydrogen Japan)

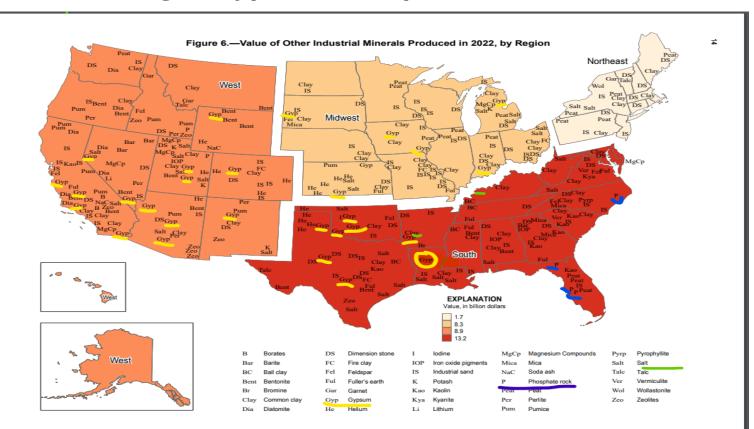
	Plant Level Data				_
Flue Gas Volume (M ³ Carbon Captured (mi Phosphogypsum (mt	t/year)	40,000 / 17% ⁽¹⁾ 100,000 - 310,000	 avo penal \$10M p		
Project Capex (Equity		\$55			
(\$M)	Annual	Carbon Upside ⁽²⁾	 reve	tiple enue ams: ineral	s
Revenues	\$30.4	+\$3.4		arbon dits	
Feedstock	(12.2)				
Opex	(8.7)				
EBITDA	\$9.5	\$12.9			

Plant Level Data			
Flue Gas Volume (M ³ /hr) / % of CO ₂	40,000 / 17% ⁽¹⁾		
Carbon Captured (mt/year)	100,000		
Gypsum (mt/year)	310,000		
Project Capex (Equity & Debt) (\$M)	\$55		

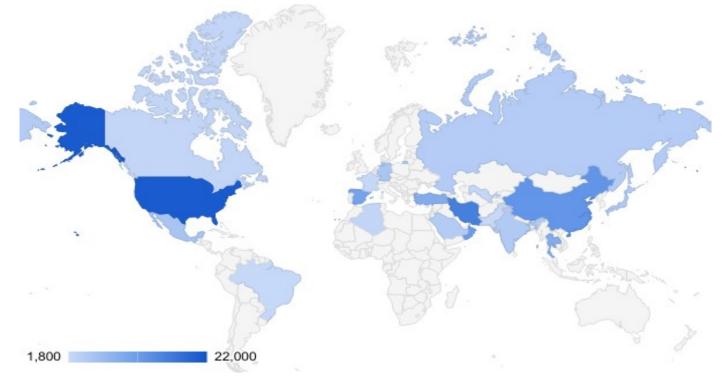

	Annual	Carbon Upside ⁽²⁾
(\$M)		
Revenues	\$50.8	+\$3.4
Feedstock	(30.1)	
Opex	(10.5)	
EBITDA	\$11.6	\$15

(1) Plant economics vary by region, feedstock, and chosen product. (2) Assuming \$50/t, per European Union Emission Trading System.

(1) Grand View Research, 'Ammonia Sulfate Global Market 2024-2030' report, (2) 2022 TAM Market And Markets, (3) 2023 TAM Market And Markets,



Large and Growing Markets


airovation technologies

Domestic Mining of Gypsum, Phosphate Rock

airovation technologies

Global Gypsum Production (2022)

Country	Production (thousand MT)	
World	150,000	
Other	22,000	
	,	
United States	21,000	
Iran	16,000	
China	13,000	
Oman	12,000	
Spain	11,000	
Thailand	9,300	
Turkey	9,300	
Mexico	5,400	
Germany	5,200	
India	4,300	
Japan	4,300	
Russia	4,100	
Saudi Arabia	4,000	
Algeria	2,500	
Canada	2,400	
Uzbekistan	2,200	
Brazil	2,000	
France	2,000	
Pakistan	1,800	

- The United States, the world's leading crude gypsum producer, produced an estimated 21 million tons in 2021
- Japan is #10, producing 4.3m tons