

Hydrogen Powder: A revolution in *Hydrogen storage and release*

The Hydrogen Value Chain Course, June 2024

Dmitry Lisitsin, Ph.D. Head of Fuel R&D group

Electriq in Hydrogen Eco System

Our Solid Carrier Technology

- KBH₄ hydrogen density is ~ 7.5 % wt (kg_{H2}/kg_{KBH4})
- Highly water soluble with almost no spontaneous H₂ release at room temp.
- 50% of the H₂ derived from the B/H and the additional 50% from the H₂O
- Fuel (KBH₄+H₂O) hydrogen density is ~ 15%wt (kg_{H2}/kg_{KBH4})
- 99.999% H₂ is produced
- KBO₂ (spent fuel) has high solubility in water

7 kg_{KBH4} = 1 kg_{H2}

 $1 \text{ kg}_{\text{KBH4}} = 2.35 \text{ kWh}_{\text{e}}$

Volumetric Energy Density of KBH₄

Electriq powder: transportation advantages

Liquid Hydrogen

- Requires transportation in dedicated liquid H₂ tankers ${}^{\bullet}$
- Maximum tanker capacity 37,500 m³ H₂ \rightarrow 2,700 ton H₂

Ammonia

- Requires transportation in fully refrigerated ammonia tankers
- Maximum tanker capacity ~ 100,000 m³ \rightarrow 12,000 ton H₂

Solid Powder (KBH₄)

- Allows marine shipping via standard container ships
- Container ship capacity > 350,000 ton KBH₄ \rightarrow 50,000 ton H₂ ۲

Electriq powder: storage advantages

- Leakage risk
- Pressure & Temp. control
- Storage capacity limitations
- Regulatory compliance

- Risk of corrosion
- Risk of explosion
- Special space consuming equipment

Hot Spot Application: Backup Power Supply

Unique **DIS**advantages of Hydrogen

- Space consuming, requires expensive investment in safety
- 24/7 investment in prevention of leaks and boil offs
- Regulatory restrictions hamper usage in sensitive areas
- Continuous investment in storage combined with rare backup power use dramatically increase the actual Hydrogen cost

Unique advantages of Electriq's technology

- Safe and space saving storage
- No investment required until the release process is initiated

- Since the hydrogen is chemically bounded, no single molecule will escape KBH₄ after years of storage
- No external power source is needed for spontaneous release process

Electriq's Circular Solution

Powder production & Recycling

Electriq Powder is safe for transportation and storage; inert and non-flammable Powder Transport & Storage

Spent Fuel for recycling

Release System

Low temperature, low pressure release system optimal for off-grid applications

End to End IP Coverage

Powder Production and Recycling, Hydrogen Release Tech & System

How does it work? Electriq's Hydrogen Release Solution Essentials

Powder to Power Electriq's Hydrogen Release Systems

3 kW system

- More than 1,000 working cycles
- Serves Electriq's lab since 2022

Powder to Power Charging Cycle

Powder to Power Charging Cycle

- The technology is based on a well-known industrial KBH₄ production process
- Electriq adapted the process to work with spent fuel as a source for KBH₄
- Few process improvements were implemented to:
 - Drastically reduce the energy consumption
 - Drastically reduce chemical consumption

	DIESEL	Brown KBH ₄ *	Green KBH ₄
CO ₂ footprint	2.68 kg _{CO2} /lit	2.59 kg _{CO2} /lit ^{**} (Density 0.7 kg/lit)	< 0.48 kg _{CO2} /lit ^{**} (Density 0.7 kg/lit)
Practical Carbon index**	0.89 kg _{CO2} /kWh (247 gr _{cO2} /MJ)	1.49 kg _{CO2} /kWh ^{**} (413 gr _{cO2} /MJ)	< 0.28 kg _{CO2} /kWh ^{**} (< 77 gr _{CO2} /MJ)

* - KBH₄ currently available on the market

** - Carbon index is calculated according to "Argonne GREET1_2021 Model"

Thank you

<u>Contact us</u> Danny Weber, VP Business Development Email: <u>danny.weber@electriq.com</u> Phone: +972-54-2312643